A Novel Dodecanuclear Mo–Cu Cluster Derived from $[Mo_2S_2(edt)_2(\mu-S)_2]^{2-}$ as a Metalloligand: Preparation and Structure of $[Mo_6(edt)_4(\mu-edt)_2(\mu_3-S)_{12}Cu_6(\mu-dppe)_2] \cdot 2DMF \cdot C_6H_{14} (edt = -SC_2H_4S^-)$

Jing-Jing Li,¹ Taike Duan,¹ Qian-Feng Zhang,^{*1} and Wa-Hung Leung² ¹Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China ²Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China

(Received February 9, 2009; CL-090141; E-mail: zhangqf@ahut.edu.cn)

A novel dodecanuclear Mo–Cu cluster $[Mo_6(edt)_4(\mu-edt)_2 (\mu_3-S)_{12}Cu_6(\mu-dppe)_2] \cdot 2DMF \cdot C_6H_{14}$ was synthesized by the reaction of $[Et_4N]_2[Mo_2S_2(edt)_2(\mu-S)_2]$ (edtH₂ = 1,2-ethanedithio) and $[Cu(MeCN)_4][ClO_4]$ in the presence of bidentate phosphine ligand 1,2-bis(diphenylphosphino)ethane (dppe). The molecular structure consists of one edt-linked double cubane and one single cubane which are linked by two bridging dppe ligands.

The synthesis, reactivity, and structures of high-nuclearity transition metal-sulfido clusters have been attracting much attention owing to their relevance to biological systems¹ and rich structural variations.² Of great interest are homo- and heterometallic cubane-type sulfido clusters because of their possible importance in industrial hydrodesulfurization catalysis.³ Notable examples are typical Fe₄S₄ and MoFe₃S₄ cubane clusters as models of the active sites nitrogenase.⁴ It is also interesting to note that the MCu_3S_4 and MAg_3S_4 (M = Mo and W) cubane clusters possess strong nonlinear optical absorption along with large optical limiting effects.⁵ In the past two decades, a number of mixed metal-sulfido clusters have been successfully isolated by a unit-construction method that uses reactive fragments as building blocks, of which the sulfide-bridged dinuclear complexes containing M_2S_4 cores (M = Mo and W) have received much attention as precursors for the synthesis of mixed-metal clusters containing incomplete $M_2M^\prime S_4$ cubane and complete $M_2M'_2S_4$ cubane cores (M' = Cu, Ag, Pt, Pd, and Ir).^{6,7} In the course of our research on the synthesis of high-nuclearity metal-sulfido clusters, we are interested in $[Mo_2S_2(edt)_2(\mu S_{2}^{2}$ (edt = $-SC_{2}H_{4}S^{-}$)⁸ as a metalloligand to bind metal ions in the presence of the bridging ligands. A novel dodecanuclear $[Mo_6(edt)_4(\mu-edt)_2(\mu_3-S)_{12}Cu_6(\mu-dppe)_2] \cdot 2DMF \cdot$ cluster C₆H₁₄ was isolated therefore. In this paper, we report the synthesis and structural characterization of the title cluster compound.

To 5 mL of $[Et_4N]_2[Mo_2S_2(edt)_2(\mu-S)_2]$ (91 mg, 0.12 mmol) DMF solution was added a solution of $[Cu(MeCN)_4]$ -[ClO₄] (245 mg, 0.75 mmol) and dppe (150 mg, 0.38 mmol) in CH₂Cl₂ (10 mL), a brown solution formed immediately. After the mixture was stirred for 45 min, little black precipitates were filtered off. The clear brown-red filtrate was carefully layered with hexane to harvest dark red block crystals, suitable for single-crystal X-ray structural determination, in a yield of 74% (based on Mo) after three days. The dinuclear molybdenum compound $[Et_4N]_2[Mo_2S_2(edt)_2(\mu-S)_2]$ has two terminal and two μ bridging sulfido ligands and four active sulfur atoms from the two edt moieties. In the present reaction, the Mo₂S₂(μ -S)₂ core

Figure 1. A perspective view of $[Mo_6(edt)_4(\mu-edt)_2(\mu_3-S)_{12}-Cu_6(\mu-dppe)_2]$ with the ellipsoids drawn at 40% probability level.

is bound to two copper atoms to form a typical cubane fragment, whereas sulfur-participated coordination of two edt moieties further resulted in formation of an edt-linked double cubane fragment. Two fragments are linked by two bridging dppe ligands to give dodecanuclear Mo–Cu cluster $[Mo_6(edt)_4(\mu-edt)_2(\mu_3-S)_{12}Cu_6(\mu-dppe)_2]$ with sulfide-bridged dinuclear Mo₂S₄ cores.

The structure of the title cluster was confirmed by an X-ray diffraction study.⁹ The structure consists of one well-separated neutral $[Mo_6(edt)_4(\mu-edt)_2(\mu_3-S)_{12}Cu_6(\mu-dppe)_2]$ cluster molecule shown in Figure 1, two DMF, and one disorder hexane solvents, which is supported by satisfactory microanalytical results.¹⁰ The peak at 1641 cm⁻¹ for ν (C=O) in the IR spectrum indicates the presence of DMF in the title cluster. The characteristic bands at 517 cm⁻¹ for ν (Mo=S) and 466 cm⁻¹ for ν (Mo- μ -S) of the precursor [Et₄N]₂[Mo₂S₂(edt)₂(μ -S)₂]⁸ are replaced by a medium strength band at 504 cm⁻¹ and a weaker band at 475 cm^{-1} in the IR spectrum of the title cluster. The cluster molecule contains one single cubane $[Mo_2(edt)_2(\mu_3-S)_4Cu_2]$ and one edt-linked double cubane $[Mo_4(edt)_2(\mu-edt)_2(\mu_3-\mu)_2($ S)₈Cu₄] which are linked by two bridging dppe ligands. The formal oxidation states for each Mo and Cu of the title cluster remain +5 and +1, respectively. The single cubane fragment contains one [Mo₂(edt)₂(μ_3 -S)₄] moiety and two copper atoms. The Mo₂S₄Cu₂ cubane core is closely related to those found in $[Mo_2(edt)_2(\mu_3-S)_4(CuPPh_3)_2]$,¹¹ $[Mo_2(dtc)_2(\mu_3-S)_4(CuBr)_2]$,¹² and $[Mo_2(dtc)_2(\mu_3-S)_4M'_2(cod)_2]$ (M = Pd, Pt, Rh, and Ir).⁷ The edt-linked double cubane fragment contains two single cubane $[Mo_2(edt)_2(\mu_3-S)_4Cu_2]$ linked by two unprecedented $Mo(\mu$ -edt)Cu bridges.¹³ Although related sulfur-linked double cubane thiobimetallic clusters such as $[Et_4N]_4[Mo_2Fe_6S_8(S-p-C_6H_4Cl)_6(cat)_2]$ and $[Et_4N]_4[Mo_2Fe_6S_8(SEt)_6(Pr_2cat)_2]$ (cat = catecholate) have been previously reported by Holm and coworkers,¹⁴ the present edt-linked double cubane is the first example of a molybdenum–copper–sulfur cluster with dinuclear complex $[Mo_2S_2(edt)_2(\mu-S)_2]$ unit as a building block.

The coordination geometry at the Mo centers remains nearly tetragonal-pyramidal: the angles range from 77.20(5) to 149.65(6)°. The angles around Cu atoms range from 93.90(5) to $124.33(5)^{\circ}$, suggesting that the coordination geometry of the Cu atoms is highly distorted tetrahedral. The variety from terminal sulfur in the staring $[Et_4N]_2[Mo_2S_2(edt)_2(\mu-S)_2]$ (av. Mo= S: 2.101(4) Å)⁸ to bridging μ_3 -sulfido in the title cluster makes slight elongation of Mo–S bond lengths (av Mo– μ_3 -S: 2.200(1) Å). The Cu-S bond lengths similarly fall into three categories: the average bond length of the copper atoms to those terminal sulfur atoms is 2.3955(14) Å, the average bond length of the copper atoms to those μ_2 -sulfur atoms of original $[Mo_2S_2(\mu-S)_2]$ cores is 2.2735(14)Å, and the average bond length of the copper atoms to μ_3 -sulfur atoms (S1 and S9) of edt moieties is 2.2228(13) Å. By comparison of normal Mo-S(edt) bonds, obvious elongation of two Mo- μ_2 -S(edt) bonds (Mo(1)-S(1) = 2.4272(13) Å and Mo(3)-S(9) = 2.4505(13) Å)is due to the sulfur-participated coordination to copper atoms in the title cluster. The average Mo-Cu and Mo-Mo distances in the title cluster are 2.8001(7) and 2.8571(6) Å, respectively, which are comparable to the according values in [Mo₂(edt)₂- $(\mu_3-S)_4(CuPPh_3)_2$] (2.813(1) and 2.8576(7) Å).¹¹ The average Cu-P bond distance of 2.2134(14) Å in the title cluster is normal and also compares excellently with those in other related clusters.^{11,15} It is interesting to note that two subcubanes in the edt-linked double cubane are joined by the bridges Mo(1)-S(1)-Cu(3) (111.08(5)°) and Mo(3)-S(9)-Cu(1) (109.96(5)°) with the specified angles. These six atoms (Mo(1), S(1), Cu(3), Mo(3), S(9), and Cu(1)) are approximately coplanar with a maximum deviation of 0.23 Å from the least-squares plane. This character is also found in Mo-Fe-S cluster [Et₄N]₄[Mo₂- $Fe_6S_8(S-p-C_6H_4Cl)_6(cat)_2]$ with sulfur-linked double cubane structure.14

The support of this work by the Natural Science Foundation (No. 20771003) and the Program for New Century Excellent Talents in University (NCET-06-0556) of China is gratefully acknowledged.

References and Notes

- O. Einsle, F. A. Tezcan, S. L. A. Andrade, B. Schmid, M. Yoshida, J. B. Howard, D. C. Rees, *Science* 2002, 297, 1696.
- 2 H. W. Hou, X. Q. Xin, S. Shi, Coord. Chem. Rev. 1996, 153, 169.
- 3 E. I. Stiefel, K. Matsumoto, *Transition Metal Sulfur Chemistry*, *Biological and Industrial Significance*, ACS Symposium Series 635, American Chemical Society, Washington DC, **1996**.
- 4 a) P. V. Rao, R. H. Holm, *Chem. Rev.* **2004**, *104*, 527. b) S. C. Lee, R. H. Holm, *Chem. Rev.* **2004**, *104*, 1135.
- 5 a) S. Shi, W. Ji, S. H. Tang, J. P. Lang, X. Q. Xin, J. Am. Chem. Soc. 1994, 116, 3615. b) S. Shi, W. Ji, X. Q. Xin, J. Phys. Chem. 1995, 99, 894.
- 6 P. Lin, X. Wu, Q. Huang, Q. Wang, T. Sheng, W. Zhang, J. Guo, J. Lu, *Inorg. Chem.* **1998**, *37*, 5672.
- 7 a) T. Ikada, S. Kuwata, Y. Mizobe, M. Hidai, *Inorg. Chem.* 1998, 37, 5793. b) T. Ikada, S. Kuwata, Y. Mizobe, M. Hidai, *Inorg. Chem.* 1999, 38, 64.
- 8 W. H. Pan, T. Chandler, J. H. Enemark, E. I. Stiefel, *Inorg. Chem.* 1984, 23, 4265.
- 9 Crystal data: crystal dimensions $0.21 \times 0.16 \times 0.10 \text{ mm}^3$, $C_{64}H_{72}N_2O_2P_4S_{24}Mo_6Cu_6$, $M_r = 2923.78$, monoclinic, space group $P\overline{1}$, a = 16.8816(4), b = 17.2053(4), c = 19.7613(5) Å, $\alpha = 81.255(1)$, $\beta = 83.295(1)$, $\gamma = 71.486(1)^\circ$, V = 5365.0(2) Å³, Z = 2, $D_{calcd} = 1.810$ g·cm⁻³, $\mu = 2.406$ mm⁻¹, $2\theta_{max} = 55.42^\circ$, Mo K α radiation ($\lambda = 0.71073$ Å), T = 293 K, R1 = 0.0428, wR2 = 0.1047, and S = 1.021 for 24769 independent reflections with $I \ge 2.0\sigma(I)$ and 1042 variables.
- 10 Anal. Found: C, 30.9; H, 3.38; N, 0.91%. Calcd for $C_{64}H_{72}P_4S_{24}Mo_6Cu_6 \cdot 2(C_3H_7NO) \cdot (C_6H_{14})$: C, 31.2; H, 3.45; N, 0.96%. IR (KBr disc, cm⁻¹): ν (C=O) 1641 (vs), ν (Mo=S) 504 (s), ν (Mo- μ -S) 475 (m). UV-vis (CH₂Cl₂) λ_{max} , nm: 318, 496.
- 11 Z. Nianyong, Z. Yifan, W. Xintao, J. Chem. Soc., Chem. Commun. 1990, 780.
- 12 Z.-H. Wei, Q.-F. Xu, H.-X. Li, J.-X. Chen, J.-P. Lang, J. Organomet. Chem. 2003, 687, 197.
- 13 B. Kure, S. Ogo, D. Inoki, H. Nakai, K. Isobe, S. Fukuzumi, J. Am. Chem. Soc. 2005, 127, 14366.
- 14 R. E. Palermo, R. Singh, J. K. Bashkin, R. H. Holm, J. Am. Chem. Soc. 1984, 106, 2600.
- 15 M. Koutmos, D. Coucouvanis, Inorg. Chem. 2006, 45, 1421.